Iranian Futurist
Iranian Futurist
Ayandeh-Negar
Welcome To Future

Tomorow is built today
در باره ما
تماس با ما
خبرهای علمی
احزاب مدرن
هنر و ادبیات
ستون آزاد
محیط زیست
حقوق بشر
محیط زیست
صفحه‌ی نخست
آرشیو
اندیشمندان آینده‌نگر
تاریخ از دیدگاه نو
انسان گلوبال
دموکراسی دیجیتال
دانش نو
اقتصاد فراصنعتی
آینده‌نگری و سیاست
تکنولوژی
از سایت‌های دیگر


بهترین آموزش‌های یادگیری ماشین با پایتون

اگر عضو یکی از شبکه‌های زیر هستید می‌توانید این مطلب را به شبکه‌ی خود ارسال کنید:
Twitter Google Yahoo Delicious بالاترین دنباله

[2023-05-14]   [ -]

پایتون یک زبان برنامه نویسی سطح بالا است که به دلیل خوانایی، تطبیق‌پذیری و سهولت استفاده، به عنوان یک انتخاب ایده‌آل برای توسعه‌دهندگان، مدیران ارشد داده و مهندسان یادگیری ماشین استفاده می‌شود. از این رو یادگیری ماشین با پایتون، امروزه محبوبیت بالایی دارد.

اکوسیستم پایتون دارای تعداد زیادی کتابخانه و ابزارهایی است که از یادگیری ماشین پشتیبانی می‌کنند، مانند NumPy، Pandas، Matplotlib، TensorFlow و scikit-learn. این کتابخانه‌های پایتون الگوریتم‌ها و ابزارهای قدرتمندی را ارائه می‌دهند که توسعه دهندگان را قادر به انجام تجزیه و تحلیل پیچیده داده‌ها، ساخت مدل‌های پیش بینی و انجام Data visualization می‌کند.

به دلیل جامعه توسعه قوی و فعال پایتون که به طور مداوم کتابخانه‌ها و ابزارهای خود را به روز می‌کند و بهبود می‌بخشد، یادگیری ماشین با این زبان بسیار محبوب است.

چرا هوش مصنوعی و یادگیری ماشین با پایتون اینقدر محبوب است؟
پایتون مدت‌هاست که زبان ترجیحی برای ساخت مدل‌های یادگیری ماشین بوده است. دلایل مختلفی وجود دارد که چرا توسعه دهندگان هوش مصنوعی و یادگیری ماشین با پایتون را برای پروژه‌های خود انتخاب می‌کنند:

سهولت استفاده: پایتون به خاطر Syntax ساده و خوانایش معروف است که نوشتن و درک کد را برای توسعه‌دهندگان آسان‌تر می‌کند.

جامعه بزرگ: پایتون دارای یک جامعه بزرگ و فعال از توسعه‌دهندگان و مدیران ارشد داده است که به طور مداوم در توسعه کتابخانه‌ها و ابزارهای یادگیری ماشین مشارکت دارند.

کتابخانه‌های قوی: پایتون کتابخانه وسیعی از ابزارها و الگوریتم‌های قدرتمند برای یادگیری ماشین دارد.

تطبیق پذیری: پایتون را می‌توان برای اهداف مختلفی از جمله توسعه وب و پروژه‌های Data Science استفاده کرد.

تجزیه و تحلیل و محاسبات علمی، اپلیکیشن‌های هوش مصنوعی و یادگیری ماشین با پایتون را به یک انتخاب محبوب برای توسعه‌دهندگان تبدیل می‌کند.

قابلیت همکاری: پایتون به خوبی با سایر زبان ها و ابزارهای برنامه نویسی ادغام می‌شود و ادغام پروژه با سیستم ها و فناوری های موجود را آسان می‌کند.

۱۰ مورد از بهترین آموزش‌های یادگیری ماشین با پایتون
این آموزش‌های یادگیری ماشین با پایتون می‌تواند به شما کمک کند تا اگر در پایتون، یادگیری ماشین یا هر دو تازه کار هستید، از این وضعیت خارج شوید.

۱- راهنمای گام به گام: اولین پروژه یادگیری ماشین با پایتون
این آموزش یک راهنمای گام به گام برای ایجاد اولین پروژه یادگیری ماشین با پایتون را به شما ارائه می‌دهد. این آموزش به گونه‌ای طراحی شده است که برای مبتدیان قابل فهم باشد و راهنمای جامعی در زمینه یادگیری ماشین ارائه دهد.

آموزش با دانلود و نصب کتابخانه Python SciPy و بارگذاری یک Dataset شروع می‌شود. در مرحله بعد، خلاصه‌های آماری و Data visualizations را برای درک ساختار مجموعه داده‌ها انجام خواهید داد. سپس، 6 مدل مختلف یادگیری ماشین ایجاد می‌کنید، عملکرد آنها را ارزیابی کرده و بهترین را انتخاب می‌کنید. در نهایت، از اعتبارسنجی متقاطع k-fold برای ایجاد اطمینان در صحت مدل انتخابی و پیش‌بینی داده‌های جدید استفاده خواهید کرد.

این آموزش را بخوانید

۲- آموزش رگرسیون خطی در پایتون
این آموزش یک راهنمای گام به گام برای پیاده سازی تکنیک اساسی یادگیری ماشین با پایتون است و پیش نیازهایی از جمله دانش اولیه آمار و احتمال، آشنایی با پایتون و کتابخانه‌های آن و درک گرادیان کاهشی (Gradient Descent) را پوشش می‌دهد.

این آموزش همچنین شامل مراحل بارگذاری داده‌ها، تقسیم آن به مجموعه های آموزشی و آزمایشی، تناسب مدل رگرسیون خطی با داده‌های آموزشی، پیش بینی با استفاده از داده‌های تستی، ارزیابی عملکرد مدل، و رسم داده‌ها و خط رگرسیون است. . در پایان این آموزش، نحوه پیاده سازی رگرسیون خطی در پایتون و نحوه ارزیابی عملکرد مدل را خواهید آموخت.

این آموزش را بخوانید

۳- آموزش ساخت یک شبکه عصبی و تولید پیش بینی
این آموزش نحوه ساخت یک شبکه عصبی (Neural Network) با پایتون برای اپلیکیشن‌های هوش مصنوعی را از ابتدا آموزش می‌دهد.این آموزش شامل اصول اولیه هوش مصنوعی، یادگیری ماشین و یادگیری عمیق است و نحوه عملکرد داخلی شبکه عصبی را توضیح می‌دهد. همچنین شامل دستورالعمل های گام به گام در مورد تعریف لایه های ورودی و خروجی، ایجاد یک لایه پنهان و استفاده از تابع فعال سازی Sigmoid است. همچنین نحوه پیش‌بینی با شبکه عصبی و ارزیابی دقت آن را پوشش می‌دهد.

این آموزش را بخوانید

۴- مقدمه‌ای بر یادگیری ماشین با پایتون
این آموزش مقدمه‌ای بر یادگیری ماشین است که الگوریتم‌ها و تکنیک‌های مختلفی از جمله k-nearest neighbor classifier ، شبکه‌های عصبی، Naive Bayes classifier، رگرسیون خطی، درخت‌های تصمیم‌گیری و الگوریتم‌های خوشه‌بندی را پوشش می‌دهد. همچنین کتابخانه ها و ابزارهای مختلفی مانند NumPy، scikit-learn و TensorFlow را پشتیبانی می‌کند.

این آموزش به مبتدیان کمک می‌کند تا اصول یادگیری ماشین را درک کنند و پایه‌ای محکم در پیاده سازی این الگوریتم‌ها در پایتون ارائه دهند. همچنین این آموزش یادگیری ماشین با پایتون، یادگیری تحت نظارت و بدون نظارت، ارزیابی مدل، Cross-validation و Hyperparameter Tuning را پوشش می‌دهد.

این آموزش را بخوانید

5- آموزش NumPy | مقدمه ای بر Data Science در پایتون
این آموزش مقدمه‌ای جامع بر NumPy، کتابخانه معروف پایتون برای Data Science را ارائه می‌دهد. همچنین مفاهیم اصلی و تکنیک‌های درگیر در استفاده از NumPy، از جمله ایجاد آرایه‌ها، دستکاری آرایه‌ها برای انجام محاسبات مفید و Indexing و Slicing آرایه‌ها را پوشش می‌دهد.

این آموزش موضوعات پیشرفته‌تری مانند آرایه‌های Broadcasting ، عملیات آرایه پایه‌ای و عملیات آرایه پیشرفته مانند ضرب ماتریس و توابع آماری را هم پوشش می‌دهد. در پایان آموزش، خواننده درک کاملی از NumPy خواهد داشت و به مهارت های مورد نیاز برای استفاده از آن برای Data Science مجهز می‌شود.

این آموزش را بخوانید

6- آموزش Scikit-Learn : یادگیری ماشین با پایتون
این آموزش مقدمه‌ای بر اصول یادگیری ماشین با پایتون با استفاده از کتابخانه Scikit-learn را ارائه می‌دهد. این اصول شامل Data exploration ، Preprocessing ، ساخت مدل، پیش‌بینی، اعتبارسنجی و ارزیابی عملکرد هستند. این آموزش نحوه استفاده از الگوریتم KMeans را برای ساخت یک مدل بدون نظارت و الگوریتمSupport Vector Machines (SVM) برای ساخت یک مدل Classification را آموزش می‌دهد.

در پایان آموزش، خواننده درک کاملی از نحوه استفاده از Scikit-Learn برای ساخت و ارزیابی مدل‌های یادگیری ماشین در پایتون خواهد داشت. چه یک مبتدی باشد و چه یک متخصص با تجربه. در کل باید بگوییم که این آموزش دانش و مهارت‌هایی را برای شروع کار با Scikit-Learn و یادگیری ماشین ارائه می‌کند.

این آموزش را بخوانید

7- آموزش تحلیل احساسات: مقدمه‌ای بر کتابخانه NLTK پایتون
این آموزش مقدمه‌ای بر تحلیل احساسات با استفاده از کتابخانه NLTK در پایتون ارائه می‌دهد و ویژگی های مهم NLTK برای پردازش داده‌های متنی و رویکردهای مختلف مورد استفاده برای تجزیه و تحلیل احساسات را پوشش می‌دهد. همچنین این آموزش موضوعاتی مانند تقسیم و فیلتر کردن داده‌های متنی، تجزیه و تحلیل فراوانی کلمات، یافتن تطابق و ترکیب‌بندی‌ها، و انجام تحلیل احساسات با استفاده از Classifier های داخلی و سفارشی را پوشش می‌دهد.

در پایان آموزش، کاربران درک خوبی از ویژگی‌های اساسی NLTK و رویکردهای مختلف مورد استفاده برای تجزیه و تحلیل احساسات خواهند داشت. همچنین به آن‌ها اجازه می‌دهد تحلیل احساسات خود را انجام دهند و براساس بینش‌های جمع‌آوری‌شده، تصمیمات مبتنی بر داده اتخاذ کنند.

این آموزش را بخوانید

8- آموزش کنترل نسخه داده با پایتون و DVC
این آموزش یک نمای کلی از نحوه استفاده از ابزاری به نام DVC برای کنترل نسخه داده در پروژه‌های Data Science و یادگیری ماشین با پایتون ارائه می‌دهد. همچنین نحوه نصب و راه اندازی ابزار، ردیابی مجموعه داده‌ها و مدل‌ها، انجام تغییرات و به اشتراک گذاری کار با اعضای تیم را توضیح می‌دهد و اهمیت کنترل نسخه داده‌ها در بازتولید دقیق آزمایش‌ها و جلوگیری از Data Loss را برجسته می‌کند.

با استفاده از DVC، توسعه‌دهندگان می‌توانند داده‌ها و مدل‌های خود را به‌طور مؤثر مدیریت و کنترل نسخه کنند، آزمایش‌های تکرارپذیر ایجاد کنند و همکاری بین اعضای تیم را بهبود بخشند.

این آموزش را بخوانید

۹- آموزش تشخیص چهره با پایتون
این آموزش تشخیص چهره با پایتون را معرفی می‌کند. این فرآیند چگونگی درک کامپیوترها از ویژگی‌های تصاویر و چگونگی تجزیه و تحلیل این ویژگی‌ها برای تشخیص چهره انسان را پوشش می‌دهد. از کتابخانه OpenCV استفاده می‌کند و نحوه استفاده از راه حل‌های مینیمال و حداقلی پایتون را برای تشخیص چهره در تصاویر نشان می‌دهد.

این آموزش همچنین مزایا و معایب استفاده از تکنیک‌های تشخیص چهره سنتی را پوشش می‌دهد و نکاتی را در مورد بهبود دقت از طریق تکنیک‌های افزایش داده ارائه می‌دهد. این برنامه برای برنامه نویسان مبتدی تا متوسط طراحی شده است که با برنامه نویسی پایتون آشنا هستند و اطلاعاتی در زمینه بینایی کامپیوتر و پردازش تصویر دارند. در پایان آموزش، افراد می‌توانند با استفاده از یک اسکریپت ساده یادگیری ماشین پایتون، چهره‌ها را در تصاویر تشخیص دهند.

این آموزش را بخوانید

۱۰- آموزش تشخیص گفتار با پایتون
این آموزش مقدمه‌ای بر تشخیص گفتار و نحوه ادغام آن در اپلیکیشن پایتون ارائه می‌دهد. این مبانی نحوه عملکرد تشخیص گفتار و بسته‌های مختلف موجود در PyPI را پوشش می‌دهد. همچنین بر روی بسته SpeechRecognition تمرکز دارد و نحوه نصب آن و استفاده از آن برای تشخیص گفتار از فایل‌های صوتی یا ورودی میکروفون را توضیح می‌دهد. در این آموزش یک کد مثال برای نشان دادن نحوه استفاده از بسته ارائه شده است.

این آموزش با برجسته کردن مزایای گنجاندن تشخیص گفتار در اپلیکیشن پایتون، مانند بهبود دسترسی و تعامل، به پایان می‌رسد.


نتیجه‌گیری
حوزه یادگیری ماشین به طور مداوم در حال پیشرفت است و تقاضا برای متخصصان ماهر در این زمینه در حال افزایش است. پایتون یک زبان محبوب برای پروژه‌های یادگیری ماشین است، چرا که دارای اکوسیستم وسیعی از کتابخانه‌ها و ابزار مناسب برای این کار است. آموزش‌های معرفی‌شده در این مقاله، برخی از بهترین منابع موجود برای کمک به افراد در شروع یادگیری ماشین با پایتون هستند.

این آموزش‌ها طیف وسیعی از موضوعات را شامل می‌شوند. از اصول الگوریتم‌های یادگیری ماشین با پایتون گرفته تا تکنیک‌های پیشرفته مانند یادگیری عمیق و شبکه‌های عصبی. اگر در حال شروع کار با Data Science در پایتون هستید، این آموزش‌ها نقطه شروع خوبی برای کسب مهارت و دانش یادگیری ماشین برای شما هستند.

منبع ترجمه: hackernoon

مطلب‌های دیگر از همین نویسنده در سایت آینده‌نگری:


منبع: 700


بنیاد آینده‌نگری ایران



پنجشنبه ۲۲ آذر ۱۴۰۳ / Thursday 12th December 2024

انسان گلوبال

+ بهترین آموزش‌های یادگیری ماشین با پایتون -

+ آیا فناوری AI جای انسان‌ها را خواهد گرفت؟ -

+ شبكه ها --

+ ایران، پس از رهایی یکی از همکارن سایت آینده نگر از ایران

+ نسل دهه ۸۰، دنبال تغییر نیست، خود ِ تغییره! //

+ ۳ تغییر که برای آینده محتوا و بازاریابی باید بدانید محسن راعی

+ تفكر توسعه‌خواهي دکتر شهیندخت خوارزمی

+ برترین شغل‌های حوزه کامپیوتر در سال‌های آینده  مهسا قنبری

+ صنعت چهارم و ویروس جهان‌گشا سرآغازی بر یک تحول بزرگ  مهدی صنعت‌جو

+ انقلاب صنعتی چهارم و تحولات کار در آینده  علی حسینی

+ آینده جهان از زبان مدیر عامل شرکت بنز 

+ چند نفر در جهان هنوز روزنامه می خوانند؟ میثم لطفی

+ انواع تفکر : تفکر انتقادی 

+ روش های خودشناسی : تست شخصیت 

+ مهارت مدیریت افراد هرمز پوررستمی

+ خلاصه کتاب موج سوم؛ نوشته الوين تافلر تافلر

+ انسان، زندگی و دانایی رضا داوری اردکانی

+ جهان گیری (ویروس کرونا) و نظم سیاسی، فرانسیس فوکویاما برگردان رحیم باجغلی

+ تفکر سیستمی چیست ؟ هدی ولی‌پور زند

+ امریکای دوران ترامپ و موج سوم الوین تافلر  بهروز بهزادی (روزنامه نگار)

+ ویروس کرونا بحرانی سیاسی است نه پزشکی یووال نوح هراری:بی بی سی

+ «علم» ، «امید» و «بحران کرونا» 

+ اعتماد، به انسان یا به کرونا؟ مسئله این است کرونانت

+ موقعیت پساکرونایی انسان سعید قاسمی زاده

+ بعد از عبور از كرونا، ما كجا خواهيم بود؟ 

+ معنی تازه «سواد» در قرن ۲۱ حمیده احمدیان راد

+ انواع سازمان و انواع برنامه ریزی 

+ خلاصه کتاب: جهانی شدن فرهنگ، هویت 

+ تاریخ اجتماعی رسانه‌ها؛ از گوتنبرگ تا اینترنت 

+ مهارت های اساسی یک کودک قرن ۲۱ 

+ شکاف بین نسلی رسانه ای  دکتر حجت اله عباسی

+ انواع تفکر : تفکر انتقادی  مسیر آینده

+ عصر دانش‌ و ابعاد آن‌ دکتر پرويز حاجياني

+ فوکویاما علیه فوکویاما سیدمصطفی شاداب

+ مرگ مدرسه یا آیندۀ مدرسه؟ ابراهیم مجیدی*:

+ تافلر و فلسفه ی تربیت بازسازی گرایی عبدالله افراسیابی

+ تکنولوژی در جامعه فراصنعتی 

+ دانشگاه آرمانی‌شده: ضرورت دگرگونی معیارهای قدمایی فرهیختگی 

+ آرمانی‌سازی گذشته و آینده 

+ هویت چیست؟ 

+ زنده باد انقلاب! یووال نوح هراری

+ سرنوشت آینده بشریت چه خواهد شد؟ میچیو کاکو

+ شکل زندگی در ۵۰ سال آینده 

+ شخصیت شناسی آینده نگری 

+ کتاب انسان آینده، تسخیر سیر تکامل به دست بشر میچیو کاکو

+ آن بالا قفل شده است؛ جنبش ها را از پایین بیاغازید یادداشت‌های یک آینده‌پژوه

+ ۲۱ درس برای قرن ۲۱: کتاب تازه‌ای از یووال نوح هراری 

+ نگرانی‌های ما در قرن بیست و یکم بیل گیتس

+ بمب ساعتی در آزمايشگاه  یووال نوح هراری

+ آئين اطلاعات  

+ انقلاب صنعتی چهارم و نشانه های ظهور 

+ «انسان خداگونه» در انتظار فردا فرد پطروسیان

+ نقد کتاب « آموزش و دموکراسی در قرن ۲۱» اثر نل نادینگز؛ 

+ جامعه اطلاعاتی و جنسیت سها صراف

+ پیامدهای مدرنیت آنتونی گیدنز

+ فرهنگ در جهان بدون مرز 

+ فرهنگ جهانی چیست؟ 

+ نظم نوین جهانی 

+ «انسان سالاری»، محور جامعه اطلاعاتی. 

+ از خانه‌های زیر آب تا تور گردشگری به مریخ! 

+ پیش‌بینی جزئیات زندگی انسان در دو قرن آینده. 

+ مهارت های زندگی در قرن بیست و یکم  آسیه مک دار

+ «گردشگری»صنعتی میلیارد دلاری و استوار بر پایه ی آینده نگری پیشینیانِ فرهیخته ی ما رضا بردستانی

+ سیستم های پیچیده و تفکر سیستمی (3) – بخش پایانی دکتر همایون مهمنش

+ زندگی ما و زندگی آنها  علی دادپی

+ سیستم های پیچیده و تفکر سیستمی (2) دکتر همایون مهمنش

+ سیستم های پیچیده و تفکر سیستمی (1) دکتر همایون مهمنش

+ پیش‌بینی آینده غیرممکن شده است فرانسیس فوکویاما

+ آیندگان ما را به‌سبب کدام خطای اخلاقی ملامت خواهند کرد؟ 

+ مقدمه‌ای برای همه آینده نگری‌ها/ ضروری‌ترین علمی که در کشور ما به آن بی‌اعتنایی می‌شود رضا داوری اردکانی

+ قدرت آینده مهدی صنعت‌جو

+ از عصر اطلاعات تا عصر مولكول. مترجم : فيروزه امين

+ تفاوت‌های حیرت‌انگیز فرزندان 

+ عجیب‌ترین قوانین ترافیکی دنیا> از جریمه خودروهای کثیف تا منع راندن خودروی مشکی در روزهای خاص 

+ فناوری‌های مورد استفاده در جنگ‌های آینده چه خواهند بود؟ 

+ موج فراصنعتی چه کسانی را خواهد برد هرمز پوررستمی

+ مدیریت استراتژیک پورتفولیو پروژه ها در هلدینگها و سازمانهای بزرگ  

+ ضرورت آینده پژوهی و نگاه به آینده به عنوان نقش برجسته روابط عمومی نوین 

+ تکنولوژی علیه تبعیض اندرو فینبرگ

+ آیا فکرعبور جایگزین رمز عبور می شود​​​​​​​ سید محمد باقر نوربخش

+ جامعه اطلاعاتی, دگرگونی تکنولوژی های نوین ارتباطی و اطلاعاتی و تحول در روابط انسانی۲ 

+ جامعه اطلاعاتی, دگرگونی تکنولوژی های نوین ارتباطی و اطلاعاتی و تحول در روابط انسانی 

+ نمایش زندگی اجتماعی در جامعه اطلاعاتی  مانا سرایی

+ سخنرانی بیل گیتس درباره بیماری‌های فراگیر، بهداشت جهانی و حملات بیولوژیکی حمیدرضا تائبی

+ آینده نگری استر اتژی فناوری اطلاعات دکتر امین گلستانی

+ روندهای علم و فناوری در سال 2017 حمدرضا میرزایی

+ دو گروه از جوانان در برابر « قانون کار » ونسا پینتو برگردان سعید جوادزاده امینی

+ اندیشیدن به آینده نظریه اجتماعی: آری به جامعه‌شناسی محمدرضا مهدیزاده

+ نقش جامعه اطلاعاتی در تحولات فرهنگی 

+ تحلیل اقتصادی آزادی دکتر محسن رنانی

+ آیا در کارها حضور بشر لازم است؟ 

+ آینده‎پذیری: چالش اساسی آینده‎پژوهی در جهان در حال توسعه. 

+ اثرات اقتصادی جامعه اطلاعاتی در جهان 

+ چگونه انسان‌ها از صد درصد توانایی مغز خود استفاده می‌کنند حمیدرضا تائبی

+ آیا اینترنت اشیا ما را به ابر انسان تبدیل خواهد کرد؟ حمیدرضا تائبی

+ آیا سیاست می تواند از قرن 21 جان سالم به در ببرد؟. کنت میناگ

+ آینده، اکنون است ـ بخش اول آرش بصیرت

+ آینده، اکنون است ـ بخش دوم آرش بصیرت

+ سیاست‌گذاران همه کشورها خواهد بود. 

+ جهانی شدن و آموزش و پرورش 



info.ayandeh@gmail.com
©ayandeh.com 1995